лекция 3.

определения: алгебра Ли, отображения правого и левого сдвига, левоинвариантное векторное поле, дифференциал гладкого отображения в точке, ϕ -связанные векторные поля.

- 1. Докажите, что отображение левого сдвига является диффеоморфизмом.
- 2. Вычислите дифференциал L_q в точке h для основной аффинной группы (в локальных картах).
- 3. Вычислите дифференциал R_g в точке h для основной аффинной группы (в локальных картах).
- 4. Докажите, что для основной аффинной группы $r_3 = x_1 \partial_1 + x_2 \partial_2 + \partial_3$ является правоинвариантным векторным полем.
- 5. Докажите, что для основной аффинной группы $\ell_3 = \partial_3$ является левоинвариантным векторным полем.

лекция 5.

определения: левоинвариантная форма, отображение антиувлечения 1-форм, структурные константы.

- 1. Вычислите касательное пространство к SL(3) в единице.
- 2. Получите формулу преобразования структурных констант C_{ii}^k .
- 3. Докажите, что значение левоинвариантной формы на левоинвариантном векторном поле является константой.

лекция 8.

определения: полная линейная группа, гомоморфизм групп Ли, гомоморфизм алгебр Ли, гомоморфизм алгебр Ли, однопараметрическая подгруппа Ли.

- 1. Найдите структурные константы и выведите уравнения Маурера-Картана полной линейной группы.
- 2. Постройте отображение ϕ по гомоморфизму групп Ли $\varphi:G\to H$ и докажите, что векторные поля X и ϕX являются φ -связанными.
 - 3. Докажите, что для левоинвариантных векторные полей $\Phi_X(ab,t)=a\Phi_X(b,t).$ лекция 10.

определения: представление действия (правое, левое) φ , действие (левое, правое) Φ , антигомоморфизм, эффективное действие

- 1. Пусть определено правое φ . Докажите, что определено правое действие $\Phi: G \times M \to M$.
- 2. Пусть определено левое Φ . Докажите, что определено левое φ .
- 3. Докажите, что представление действия $GL(2,\mathbb{R})$ на \mathbb{R}^2 , которое ставит каждой матрице центроаффинное преобразование, является левым действием.
 - 4. Докажите, что для любого действия $(\varphi_g)^{-1} = \varphi_{g^{-1}}$.
- 5. Докажите, что действие $\tilde{\varphi}_{gH}(m) = \varphi_g(m), gH \in G^* = G/Ker \varphi$ определено корректно и оно будет эффективным.

лекция 13.

определения: действие, эффективное действие, транзитивное действие, свободное действие, отображение σ_m .

- 1. Задайте действие группы $GL(2,\mathbb{R})$ на пучке прямых (модели проективной прямой) и перейдите от него к эффективному действию.
 - 2. Постройте действие группы \mathbb{R}^2 на плоскости \mathbb{R}^2 .
- 3. Сформулируйте альтернативное определение эффективного действия и докажите его эквивалентность с исходным определением.
 - 4. Докажите, что для свободного действия отображение $\sigma_m: G \to M$ будет биекцией на образ. лекция 18.

определения: гладкое действие группы на многообразии, дискретное действие, накрытие, открытое множество.

- 1. Приведите пример, когда пространство орбит не будет гладким многообразием.
- 2. Докажите, что $\pi:M\to Orb_GM$ будет непрерывным и открытым.
- 3. Приведите пример дискретного действия.

- 4. Приведите пример не дискретного действия.
- 5^* (+3 балла). Пусть группа $\mathbb{Z}_2 = \{1, -1\}$ действует на плоскости \mathbb{R}^2 (\mathbb{R}^2 рассматривается как группа Ли, то есть представление $\varphi : \mathbb{Z}_2 \to Aut \mathbb{R}^2$). Покажите, что для любого такого представления φ это действие не будет дискретным. Останется ли данное утверждение верным, если вместо \mathbb{R}^2 взять \mathbb{R}^n для любого натурального n?

лекция 20.

определения: накрытие, дискретное действие группы, однородное пространство, локальная карта на многообразии.

- 1. Докажите, что если действие группы G на многообразии M дискретно, то $\pi: M \to Orb_G M$ накрытие.
- 2. Постройте гладкую структуру на Orb_GM в случае дискретного действия группы.
- 3. Приведите примеры дискретного действия групп на \mathbb{R} и S^1 . Какими многообразиями являются пространства орбит?
 - 4. Какие фундаментальные группы могут быть у \mathbb{R}^2 как однородного пространства?
- 5^* (+1 балл). Пусть M множество, G абстрактная группа. Будет ли транзитивность действия G на M зависеть от выбора представления φ ? Другими словами, будет ли для одного представления действие транзитивным, а для другого нет?

лекция 23.

определения: группа изотропии, однородное пространство, представление действия.

- 1. Получите закон умножения в группе $GL(2,\mathbb{R})\times\mathbb{R}^2$, чтобы $\varphi(g_1g_2)=\varphi(g_1)\circ\varphi(g_2)$.
- 2. Докажите, что группы изотропии изоморфны.
- 3. Будет ли изоморфизм групп изотропии H_p в H_q зависеть от выбора элемента из G, переводящего точку p в точку q?

лекция 26.

определения: однородное пространство, представление гладкого действия, гладкое отображение, факторгруппа.

- 1. Докажите корректность операции умножения в факторгруппе, то есть (aH)(bH) = (ab)H.
- 2. Пусть N гладкое многообразие. Докажите, что $f:G/H\to N$ гладкое тогда и только тогда, когда $F=f\circ\pi:G\to N$ гладкое.
 - 3. Докажите, что отображение $\beta: G/H \to M, \ \beta(gH) = \varphi_q(p)$ определено корректно и инъективно.
 - 4. Докажите, что отображение $\beta: G/H \to M, \ \beta(gH) = \varphi_g(p)$ сюръективно и гладко. лекция 28.

определения: группа изотропии, ортогональная матрица, стандартное скалярное произведение, представление группы.

- 1. Докажите, что G/H однородное пространство.
- 2. Докажите, что S^1 однородное пространство и постройте его модель.
- 3. Докажете, что $\langle Ax, Ay \rangle = \langle x, y \rangle$ тогда и только тогда, когда $A \in O(n, \mathbb{R})$.
- 4. Определите действие группы $O(n,\mathbb{R})$ на сфере S^{n-1} и докажите, что оно транзитивно. лекция 31.

определения: $GL(n,\mathbb{C}), U(n), SO(n,\mathbb{R}).$

- 1. Найдите группу изотропии для S^{n-1} с фундаментальной группой $O(n,\mathbb{R}).$
- 2. Постройте каноническую модель S^{n-1} с фундаментальной группой $SO(n,\mathbb{R})$.
- 3. Докажите, что $\langle\langle Cz,Cw\rangle\rangle=\langle\langle z,w\rangle\rangle$ тогда и только тогда, когда $C\in U(n)$. лекция 33.

определения: U(n), SU(n), однородное пространство.

- 1. Докажите, что действие U(n) на S^{2n-1} является гладким.
- 2. Постройте каноническую модель S^{2n-1} с фундаментальной группой U(n).
- 3. Постройте каноническую модель S^{2n-1} с фундаментальной группой SU(n).

лекция 38.

определения: проективное пространство, группа Aut V, эффективное действие, факторгруппа.

- 1. Определите действие $\operatorname{Aut} V$ на P(V) и докажите, что оно левое и не эффективное.
- 2. Постройте эффективное действие группы GP(V) на P(V) и докажите, что оно гладкое.
- 3. Постройте каноническую модель $\mathbb{R}P^{n-1}$ с фундаментальной группой $O(n,\mathbb{R}).$
- 4. Постройте каноническую модель $\mathbb{R}P^{n-1}$ с фундаментальной группой $SO(n,\mathbb{R})$. лекция 41.

определения: многообразие Штифеля, многообразие Грассмана, однородное пространство.

- 1. Вычислите размерность многообразия Штифеля.
- 2. Постройте каноническую модель многообразия Штифеля.
- 3. Покажите, что многообразие Грассмана является однородным пространством.